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INTRODUCTION RESULTS 

IT HAS been proposed that radioactive waste from nuclear 
power plants be disposed of in cylindrical containers by 
burying them under the surface of the earth. To carry out 
safety analysis and to gauge the impact of this proposal on 
the environment it is necessary to determine flow patterns 
and heat transfer rates in the vicinity of these containers. The 
present work gives a summary of analytical and numerical 
results for temperature distribution in and around a canister 
buried in a saturated porous medium. Heating of the canister 
surface takes place because of the decay of radioactive waste 
contained within it. it is important to know the maximum 
and minimum t~rnp~~dtures on the cylinder surface since 
they decide the magnitude of the transport coefficients and 
the extent of the thermal stresses. Heat transfer from the 
cylinder to its surroundings will occur due to one of the 
following mechanisms : conduction, buoyancy-driven con- 
vection of the pore Ruid and forced convection due to natural 
ground water movement. Solutions for these problems are 
available when the surface of the cylinder has a prescribed 
temperature. Results have been presented here for a single 
and an array of cylinders with specified heat flux on their 
surface. 

Conduction limit 
In the absence of a super-imposed flow the conduction 

problem follows the dimensionless equation, 

T, = V’T 

subject to T(r = 0) = 0. This equation can be solved by 
Fourier transforms. For an isothermal boundary condition 
T(r = 1) = 1 the solution for the wall heat flux is 

where N(B) = Ji(@) + Yi;@). This integral is evaluated 
numerically by Simpson’s rule. The conduction solution also 
describes the local heat flux for steady forced flow parallel 
to the axis of a cylinder with t replaced by :/Pe. The latter 
problem has been solved in [I] using boundary-layer analysis. 
The two solutions are compared in Table I. 

For a heat flux boundary condition ( - T,(r = I) = I) we 
solve for the wall tempe~ture as, 

s 1 

T(l,t) = (: ;$[I -exp (-P’r)J d/l 

FORMULATION 

Fluid flow in a saturated homogeneous isotropic porous 
medium is taken to be governed by Darcy’s law, 

u = -X-(VP+P&)/P (1) 

the incompressibility constraint V-U -= 0 and the energy 
transport equation, 

T, +u*VT = rV’T. (2) 

In the absence of buoyancy effects p is a constant and 
V * u = V. KVp = 0. For flow past a single cylinder buried in 
a uniform medium. K is a constant and V'p = 0. Using 
potential theory the velocity components can be determitn_ed 
as u-it> = 17. (1 --R’/_-‘) where r = .x+iF and i = $-I. 
For an array of canisters we solve the equation V. KVp = 0 
numerically by assigning a small value for K over the cyl- 
inders and unit value in the flow region. Equation (2) has 
been solved here subject to the constant heat flux condition. 
- T, (r = R) = y. The results are presented in dimensionless 
form using R as the length scale, R’/dl as the time scale. the 
approach velocity c/ as the velocity scale and qR as the 
temperature scale. In free convection problems the velocity 
scale is r*: R. Convection problems are assumed to have 
reached steady stale since they occur in boundary layers. 

where N(B) = Ji(/l)+ Y:(p) and R(b) = J,,([j)Y,(/?)- 
J,(B) Ye(p). The value of T attained by an isolated canister 
can increase further if more canisters are present in its neigh- 
bourhood. Consider a symmetric array of five canisters. four 
of which are placed on a square edge d and the fifth is 
placed at the centre. The temperature of the central 
canister is obtained by the principle of linear superposi- 
tion. Calculations show that the minimum temperature 
is within 98% of the maximum temperature in Table 2. 

The boundary-layer form of equations governing buoy- 
ancy-driven how and heat transfer are given below. 

Table I. Comparison of heat llux values 
on an isothermal cylinder 

t. -_I Pe Present 

0.5 2.081 2.06 
1 1.649 I.597 
5 1.071 1.107 

PI 
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NOMENCLATURE 

J. Y Bessel functions of first and second kind AT characteristic temperature difference 
K absolute permeability I,. ,‘ velocity components. 

P pressure 
fc Peclet number, UR;‘r Greek symbol 
Ro Rayleigh number, q[hITKR:vx Y thermal dispersion coefficient. 

Table 2. Maximum temperature on the central canister of an Constant heat llux : 
array Vertical 

I I IO 100 1000 10000 h&+8’= I2OziRu 

d= 6 0.834 3.07 7.9X 13.53 19.34 
Horizontal 

c/= X 0.797 2.38 6.XI 12.38 IX.18 I ,,1 
(1 = W> 0.796 1.64 2.71 3.85 5.02 

d 
Fdr = f) 

whcrc 

Vertical cylinder 

II = Ru T: (uTr),+(rTr), = (rT,), (3) 

Horizontal cylinders 

(w), = rT, Ra sin 0 

(uT),,+(rrT), = (rr;),. (4) 

In equations (3) amd (4) the notation ( ), stands for partial 
diferentiation with respect to r and Ro is the Rayleigh 
number. These equations are solved by an integral method 
that uses a quadratic profile for T with the boundary-layer 
thickness 6 as a parameter. For an isothermal cylinder this 
profile is T= (I -[(r- l)/S]j’ and for the constant heat 
flux problem T = (6/2) (1 -[(r- l)/S]J ‘. is is determined by 
integrating equations (3) and (4) from r = I to r = I + S. The 
Nusselt number is defined in the present work as - r, (r = I) 
for the isothermal problem and l/r (r = I) for the constant 
heat flux problem. In each case it can be shown to be 2,i6. 
Solving equations (3) and (4) using the profiles given above 
yields the following. 

Isothermal : 

Vertical 

6’/‘9+6’/2 = IOz:Ru 

Horizontal 

~‘+“.,,=~;,,,I-, 

where 

For the isothermal problem the solutions given above are 
compared with [I] and [3] in terms of the average Nusselt 
number, see Table 3. 

Original results are given in Table 4 for the constant heat 
llux problem. The vertical cylinder here has a height of ten 
units. 

The problem of cross-flow past a heated cylinder is now 
considered. The boundary-layer form of equation (2) is 
(-2sin OT),, = (life) (rT,), which can be integrated 
between r = I and I +6 using a quadratic profile for T. This 
yields, the following 

Isothermal 

Constant llux 

4’+ cot Oyi, = ~ 3 cosec (I! Pc 

where 41, = (5’. cb’ = d$/d() and the initial condition 1s 
$(rr) = 31Pe since by symmetry 4’ is zero here. The equations 
for <b are intcgrdted using a fourth-order Runge-Kutta 
method. Results for the isothermal problem are compared 
below, in Table 5 with those given in [4]. 

The boundary-layer method (BLM) is not valid at low 
Peclet numbers; it is also not useful in studying interaction 
effects between canisters. The complete steady state solution 
of equation (2) has been obtained here using a Galerkin 
finite element method (FEM). Details of this procedure is 
described in the author’s work reported elsewhere [5]. 

Table 3. Average Nusselt number for an isothermal cylinder 

Z; Rrr 0.00 I 0.01 0.1 I .o 10.0 Remarks 

Nu (present) 14.35 8.64 2.X6 I.005 0.384 
Nu [I] 14.12 9.0 2.96 1.046 o.427 Vertical 

Rl/ IO 100 IO00 2500 I Cl 000 Remarks 

Nu (present) I .496 4.35 13.21 20.72 41.13 
Nu [3] I .x3 3.99 12.63 19.97 39,95 Horizontal 
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Table 4. Average Nusselt number for a cylinder with a 
prescribed heat flux 

Ra 1 IO 100 1000 5000 PC? 0.01 0.1 I 10 50 100 

Vertical 0.586 1.183 2.45 5.16 8.76 FEM 0.525 0.53 0.837 2.46 5.42 7.18 
Horizontal 0.689 1.39 2.89 6.07 10.26 BLM 0.0836 0.265 0.836 2.65 5.91 8.36 

Table 5. Average Nu for cross-flow past an isothermal 
cylinder 

PC 0.1 1 5 10 50 100 

Present 0.232 0.734 1.64 2.32 5.19 1.34 
[41 0.221 0.697 1.56 2.20 4.93 6.97 

Table 6 shows a comparison between the two methods for 
the constant flux problem. The agreement between them is 
good at Pe z 1 though at Pr > 100 the accuracy of FEM on 
a prescribed grid drops. 

The FEM code has been used to determine interaction 
effects among five canisters placed in a symmetric array as 
described earlier. The average Nusselt number on the central 
canister is given in Table 7. 

At low Peclet numbers Nu on the central canister 
decreases, i.e. the wall temperature increases due to the pres- 
ence of the neighbouring canisters. At higher values of Pe 
the cylinders are effectively isolated. In an array the local 
velocity around the central canister can, however, be larger 

Table 6. Average Nu for cross-flow past a cylinder with a 
constant heat flux 

Table 7. Average NM on the central canister of an 
array with a constant heat flux 

PC d=6 

0.1 0.247 
I 0.478 

10 2.56 

8 % 

0.354 0.525 
0.596 0.837 
2.52 2.46 

than for a single canister because of the area blocked. This 
can lead to further increase in the average Nusselt number. 
This increase is visible in Table 7. 
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